UNCLASSIFIED # AD NUMBER ADA800808 CLASSIFICATION CHANGES TO: unclassified FROM: confidential LIMITATION CHANGES ### TO: Approved for public release; distribution is unlimited. #### FROM: Distribution authorized to DoD only; Administrative/Operational Use; 07 AUG 1947. Other requests shall be referred to National Aeronautics and Space Administration, Washington, DC. Pre-dates formal DoD distribution statements. Treat as DoD only. #### AUTHORITY NASA TR Server website; NASA TR Server website RM No. A7A31 ## **AERONAUTICS LIBRARY** California Institute of Technology ## RESEARCH MEMORANDUM DEVELOPMENT OF NACA SUBMERGED INLETS AND A COMPARISON WITH WING LEADING-EDGE INLETS FOR A $\frac{1}{4}$ -SCALE MODEL OF A FIGHTER AIRPLANE By Emmet A. Mossman and Donald E. Gault Ames Aeronautical Laboratory Moffett Field, Calif. ## NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON August 7, 1947 #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### RESEARCH MEMORANDUM DEVELOPMENT OF NACA SUBMERGED INLETS AND A COMPARISON WITH WING LEADING-EDGE INLETS FOR A 1/4-SCALE MODEL OF A FIGHTER AIRPLANE By Emmet A. Mossman and Donald E. Gault #### SUMMARY Characteristics of NACA submerged duct entries and wing leadingedge inlets designed for a 1/4-scale flow model of a fighter-type airplane powered by a jet engine in the fuselage are presented. Duct total-head losses at the simulated entrance to the jet engine and pressure distributions over the duct entries are shown. A comparison of the dynamic pressure recovery and critical Mach number of the two intake systems is made. Included is a discussion of methods of ameliorating a duct-flow instability which may appear with a twinentrance submerged duct system. The dynamic pressure-recovery results indicate that, for a jet-propelled airplane with the jet engine in the fusclage, NACA submerged duct entries afford a better method of supplying air to the jet engine than wing leading-edge duct entries. This choice of the submerged entry is mainly due to the complex internal ducting of the wing leading-edge system. The critical Mach number is shown to be higher for these NACA submerged fusclage entries than for the basic wing section or the wing leading-edge duct entries, through the high-speed range dgwn to 280 miles per hour (CL=0.20), for see level flight. #### INTRODUCȚION Airplanes or missiles which utilize the oxygen of the atmosphere for combustion in their propulsive systems require that the air bo ducted with a minimum pressure loss from the free stream to the entrance of the engine. Small losses in internal—flow systems handling the large quantities of air required by jet engines cause serious decreases in the thrust and appreciable increases in the COMPADEMENTAL ALL PROPERTY AND ADDRESS OF THE PARTY fuel consumption so that the attainment of optimum performance from a jet-powered airplane depends, in great part, upon the selection and design of a ducting system which will supply air to the jet engine with maximum efficiency. This report is concerned with the problem of obtaining maximum ducting efficiency for a jet-propelled airplane by partially converting the kinetic energy of the entering air to pressure energy, and conserving the remainder of the kinetic energy so that a minimum pressure loss results at the entrance to the jet-engine compressor. In this investigation two ducting systems of dissimilar geometry were designed and installed on a l/4-scale flow model of a typical fighter airplane. One design incorporated NACA submerged inlets and the other, wing leading-edge inlets. Because the same model was used for the two duct installations and the air quantity requirements through the range of flight attitudes were identical for the two systems, this investigation afforded an excellent means of comparing their relative merits. This work was done in the Ames 7- by 10-foot wind tunnel in conjunction with the general investigation of jet-motor air intakes being conducted at the various laboratories of the NACA. The design criteria for the NACA submerged ducts were taken from reference 1. #### SYMBOLS The symbols used throughout this report are defined as follows: | C _L airplane | airplane lift coefficient | |-------------------------|--| | Δh | total-head loss in boundary layer | | ΔĦ | loss in total-head of the duct system from free stream to the entrance of the jot engine | | $\Delta H_{ m E}$ | loss in total-head from free stream to duct entrance | | ∇H ^D | loss in total-head from duct entrance to entrance to jet engine | | P | pressure coefficient [(p _l -p _o)/q _o] | | pı | local static pressure | | P _O | free-atream static pressure | | | COMMEDIATION | | q _o | dynamic pressure at duot entrance $(\frac{1}{2}\rho V_1^2)$ | |--------------------------------|--| | q _o | free-stream dynamic pressure (\frac{1}{2}pV_0^2) | | vi | duct-inlet velocity | | v _o . | free-stream volocity | | v ₁ /v _o | inlet-volocity ratio | | æ | angle of attack referred to fusciage reference line, degrees | | ρ | mass density of air, alugs per cubic foot | | η | total dynamic pressure recovery $\left(1 - \frac{\Delta H}{q_0}\right)$ | | $\eta_{ m E}$ | dynamic pressure recovery at duct entrance $\left(1 - \frac{\Delta H_E}{q_0}\right)$ | | η_{D} | internal duct efficiency $\left(1 - \frac{\Delta H_D}{q_e}\right)$ | #### MODEL AND APPARATUS The 1/4-scale, partial-span, flow model of a fighter-type airplane used in these tests was originally designed as a model of a jet-boosted airplane. For this series of tests, however, it was assumed that the front reciprocating engine was removed and that the rear jet engine was the only means of propulsion. The jet-engine air-inlet systems were removable so that NACA submerged and wing leading-edge ducts could be tested alternately. The model, constructed of laminated mahogany over a steel framework, had no provisions for landing gear or empennage. For the NACA submerged duct entry application, twin entrances, symmetrical about the longitudinal axis, were located along the sides of the fuselage 2 inches (model scale) forward of the junction of the wing leading edge and the fuselage. The air drawn through the submerged entrance was ducted directly aft, making one gradual turn inboard to the jet engine when clear of the pilot's enclosure. The wing leading—edge duct system, also symmetrical about the longitudinal axis, first ducted the air inboard from the wing leading edge ahead of the wing spar, next turned upward into the fuselage, and then parallel to the thrust axis with a final turn COLUMN TERM inboard to the entrance of the jet unit similar to that for the submerged entry. Each wing leading-edge duct made three approximately 45° turns in the horizontal plane and two 50° turns in the vertical plane. A comparison of the internal ducting of the NACA submerged duct entry and the wing leading-edge entry is presented in figures 1 and 2. Full-scale wing and flap dimensions for the airplane are given in table I, while figure 3 presents a drawing of the airplane on which is indicated the wing span of this 1/4-scale flow model. The model, equipped with wing leading-edge ducts and flaps deflected 50°, is shown mounted in the tunnel in figure 4. For bench tests to determine the duct efficiency, air was drawn through the left-hand ducts by a throttle-controlled constant-speed blower. (See fig. 5.) A plenum chamber and duct-exit turning vanes were used for these tests to duplicate, as closely as possible, the flow conditions of the wind-tunnel tests and to eliminate any effect of the butterfly-type throttle. Quantity flow was measured by a standard venturi located downstream of the plenum chamber. The duct total-head losses were measured at the simulated entrance to the jet motor by a rake consisting of 17 shielded total-head tubes connected to an integrating manameter and four static-head tubes. For the wind-tunnel tests, the inlet air was drawn through the model by a centrifugal pump driven by a variable-speed electric motor. The air, after passing through the ducting systems, was discharged into a plenum chamber in the fuselage (fig. 6). From this chamber, the air was drawn out of the model through a duct in the wing spar and entered a mercury seal which isolated the wind-tunnel scale system from forces on the external ducting system. Quantity flow of air was measured by a standard orifice placed downstream from the mercury seal, the discharge end of the orifice leading to the pump located outside of the wind tunnel. The total-head losses were measured by pressure-tube rakes, one placed in each duct at the simulated entrance to the jet motor. Both rakes were identical to the rake used for the separate tests on the internal ducting systems and were connected to a single integrating manometer to allow evaluation of the over-all losses. The pressure distributions were obtained from orifices built into the model and connected to liquid-in-glass manometers. All pressures were recorded photographically. CONFIDENTIAL #### TEST METHODS Prior to the tests necessary for a comparison between the two systems, a developmental investigation was made to devise an entrance configuration which gave the highest ram recovery over the flight range of inlet-velocity ratios from cruising to high speed. In this preliminary study the geometry of the ramp and deflectors were altered and a final configuration obtained from consideration of maximum pressure recovery: The model angle of attack was held constant (a=00) and the inlet-velocity ratio varied throughout these tests. At the conclusion of the developmental studies, total-head losses at the simulated entrance to the jet engine were measured for both duct systems. These losses were obtained throughout the angle-ofattack range for flaps
retracted and flaps deflected 500 at inletvelocity ratios of 0.20 to 3.00. A method was devised relating the airplane lift coefficient with the flow model angle of attack. These relationships are given in figure 7 for flaps retracted and flaps deflected 50°. From this figure and the relationship between inlet-velocity ratio and airplane lift coefficient given in figure 8, the total-head losses can be found for all flight conditions. · In order to facilitate the model testing, a relationship was derived for setting inlet-velocity ratio by means of the orifice pressure drop. It was assumed in the derivation that the density at the duct entrance was the name as that in the free stream, which is true only at inlet-velocity ratios of 1.00. However, the error in inlet-velocity ratio was negligible, amounting to 0.2 of 1 percent and 2.0 percent at ratios equal to 0.20 and 3.00, respectively. For the submerged duct installation, pressure distributions were taken along the center line of the lip and ramp for both constant angle of attack (c=00) throughout the inflow range, and for matched conditions of CLairplane, model angle of attack, and inlet-velocity ratio that simulated flight at sea level. Pressure data for the wing leading-edge inlet were obtained throughout the angle-of-attack range for several inlet-velocity ratios that could be encountered in high-speed flight. CONFIDENTILAL #### v #### RESULTS AND DISCUSSION #### Development of the Intake Systems It was realized that in the application of the submerged duct criteria, the proximity of the wing to the duct entry and the curvature of the fuselage contour, factors which could not be evaluated in the general investigation, might modify the placement and exterior shape of the entrance for maximum dynamic-pressure recovery throughout the important flight range. A previous application of a submerged-duct system disclosed that, when the duct entry was placed adjacent to the wing, the flow field of the wing had an adverse effect on the lip-pressure distribution and induced a flow interference along the ramp. For these reasons, the entry was placed as far forward of the wing leading edge as possible. Preliminary tests were made to devise an entrance configuration giving the highest ram recovery over the flight range of inlet-velocity ratios from cruising to high speed. Reference 1 states that the deflector size for submerged inlets is determined primarily by the boundary-layer thickness. Therefore, measurements were taken on the basic fusclage contour at the station corresponding to the lip of the submerged entry. The boundary-layer profile obtained, compared in figure 9 with boundary layer 1 of reference 1, indicated that the deflector size required would be similar to the small or normal deflectors. Using the entrance losses of reference 1 for an entrance configuration and boundary-layer thickness that closely approximated the conditions on this model, it was desired to estimate the total-head recovery that could be expected for the NACA submerged entry by the following relation: ## $\eta = \eta_{\rm E} + (\eta_{\rm D} - 1) (V_1/V_0)^2$ This served as a guide to the preliminary studies in which the geometry of the ramp and deflectors were altered to obtain the highest recoveries through the important flight range. Use of the aforementioned relationship required the determination of the duct efficiency from separate tests on the internal-ducting system. Bench tests conducted on the left-hand internal duct indicated a 92-percent duct efficiency (fig. 10). A tuft study disclosed no stall in the curved section of the duct, and it is believed that vancs would not improve the recovery. A comparison of the estimated pressure recovery and that obtained COMMISSION TOWN EDWARD with the final submerged-duct-entry configuration is shown in figure 11. Considering the presence of the wing and the fuselage-surface curvature (factors mentioned previously which were not evaluated in the general investigation of NACA submerged inlets), and, in addition, the probability of a slight change in duct efficiency with inlet-velocity ratio, it is thought that the estimated and actual total-head recoveries are in good agreement. It should be emphasized that no drag evaluation was made in this or subsequent tests, and that the final duct-entrance configuration was determined only from considerations of the dynamic-pressure recovery and critical Mach number of the lip. Views of the final submerged duct entrance configuration are presented in figures 12(a) and 12(b). Ordinates for the plan-form shape of the ramp and deflectors, and the lip-contour ordinates are presented in figure 13. Separate tests were made on the wing leading-edge internal ducting to determine its efficiency. Several tests were made to . obtain the best pressure recovery with various guide-vane configurations. The ducting efficiency obtained, 64 percent (fig. 10), indicates that the several bends, even with guide vanes, occasion considerable losses. The internal-structure arrangement of the wing and fuselage largely determines the complexity of the ducting system for wing leading-edge inlets. The usual result has been low internal-ducting officiencies. If these internal-ducting efficiencies could be improved, major increases in the pressure recovery at the entrance to the jet-engine compressor would result. However, for the type of aircraft considered, with the jet ongine in the fusclage and using wing leading-edge inlets, no significant gains have been found. With the tendency toward thinner wings on high-speed aircraft, and with the increased air requirements of the new high-thrust jet motors, it is probable that using wing inlets on this type airplane will become more difficult. The wing leading-edge inlot is shown in figure 4. A comparison of the plain and ducted wing sections together with pertinent ordinates are given in figure 14. Comparison of the Intake Systems <u>Dynamic-pressure losses.</u> Upon completion of preliminary tests and selection of the submerged-duct-entrance and wing leading-edge-inlet configurations, the duct total-head losses were determined. COMPTOMICAL Tables II and III present the pressure losses as a ratio of freestream dynamic pressure for flaps retracted and flaps deflected 50°, respectively. The total-head losses as a function of airplane lift coefficient throughout the flight range, flaps retracted and flaps deflected 50°, were obtained from these data by cross-plotting for proper values of angle of attack and inlet-velocity ratio. The total-head losses, flaps retracted, for NACA submerged and wing leading-edge duct systems are compared in figure 15 for sealevel and 30,000-foot operating conditions. On the same figure is presented the comparison for flaps deflected 500 at sea level. Examination of figure 16, which compares the dynamic-pressure recoveries for the two systems throughout the speed range, shows a greater pressure recovery for the NACA submerged duct entries for all flight conditions. Of particular interest is the high-pressure recovery over a wide range of flight speeds that is obtainable with the NACA submerged duct entries on this installation. Pressure distribution.— Table IV lists in tabular form the pressure distribution in terms of pressure coefficients over the lip of the NACA submerged duct entry for constant angle of attack (α =0°) through the inflow range, and for matched flight conditions at sea level. Figures 17(a) and 17(b) present the pressure distribution along the bottom of the ramp for these same conditions. Because the ramp was lengthened while the model was in the tunnel, pressure tubes are lacking over the first 3 inches. This is unfortunate, since the pressures are still rising in this section. However, these pressures over the front portion of the ramp (fig. 17) are unduly high and not representative, since, for the submerged—duct installation, the velocity ratio of the air entering the cowl was zero, thereby causing high pressure peaks over the forward portion of the cowling. A streamline nose shape would provide a more favorable pressure gradient on this front portion of the ramp. Pressure distribution for the wing leading-edge inlet is tabulated in tables V to XI for the wing-fuselage juncture with the plain and ducted wing section and the outboard closing shape (wing station 18, fig. 14.) For all practical purposes, the pressure distribution at the wing-fuselage juncture and outboard closing shape was found to be independent of inlet-velocity ratio. The critical Mach numbers were determined from the peak negative pressure coefficients of the two systems by the Karman-Tsien method outlined in reference 2. The critical Mach numbers for matched conditions at sea level for NACA submerged and wing leading-edge inlets are shown in figure 18. Included is a comparison of the GOIR IDENTIAL critical Mach number of the two inlets, which shows the NACA submerged duct entry to be higher through the range of high speed down to 280 miles per hour (CI=0.20) for sea-level flight. In the high-speed attitude the comparative values are 0.75 for the NACA submerged inlet and 0.67 for the wing leading-edge inlet. Although sufficient data are not available for a direct comparison at altitude, the use of NACA submerged ducts for this installation should prove more advartageous through a comparable speed range. In comparing the two typo inlets at some other altitude for a given flight condition, the change in the critical Mach number characteristics from those shown on figure 18 would be due, primarily, to change in angle of attack. The wing leading-edge inlet is more sensitive in this respect, so that the difference between the two entries as shown on figure 18 should be accentuated. The effect of the change in inlet-velocity ratio with altitude for a given flight condition is of secondary importance. Pressure distributions were not measured over the deflectors. In
this series of tests the deflectors were developed solely from the standpoint of increased pressure recovery at the entrance of the inlet. The existing deflector configuration should not be considered as final, and it is probable that more gradual contours could be utilized for more favorable air flow along the fuselage. It should be emphasized that the critical Mach number of the submerged duct entry is to a large extent dependent upon the type of pressure field in which the duct is placed. A location nearer the wing will give somewhat lower critical Mach numbers. Flow instability in a twin NACA submerged duct system.— Under certain flow conditions at low inlet—velocity ratios, an unstable condition of the entering air may be encountered with a twin NACA submerged duct system. This instability is common to ducting systems consiting of two entrance channels which discharge into a common reservoir, provided that, with increasing inlet—velocity ratio, the total—head losses first decrease and then increase. This condition can exist, as in this case, where the entering flow is constrained on one or more sides so that some boundary—layer air is taken in. Whether the instability would occur in the actual installation depends upon the mechanical design of the jet motor. If the air empties into a common chamber before entering the jet-motor compressor, the instability could occur. At present the inlet-velocity ratio at the start of instability cannot be predicted, but it has been observed that instability never occurs at ratios above that at maximum recovery. In order to prevent instability the entrance ducts should be designed for a high-speed CONFIDENTIAL * * * 1075. inlet—velocity ratio that allows a margin of 0.2 to 0.3 above that at instability. This would permit the jet motor to be throttled considerably and still operate in the stable range. However, if this does not allow for sufficient throttling, then mechanical devices could be used which would either maintain inlet—velocity ratios above that at instability when the engine was throttled, or would decrease the ram recovery so that the maximum recovery would occur at inlet—velocity ratios below those at which the airplane was momentarily operating. The bottom of the ramp could be hinged at the forward end so that the inlet area could be reduced or completely closed off by a trapdoor arrangement. This would not only eliminate the instability but also enable a jet-boosted aircraft, cruising with the jet motor inoperative, to eliminate the high drag due to air bleeding through the jet motor. For use in a completely jet-propelled airplane, a butterfly valve in one of the entrance channels could be automatically moved in conjunction with the throttle, so that when the speed of the jet motor was reduced below a certain value, the valve would be actuated enough to eliminate the instability. Another possible means of ameliorating this condition is the provision of a hatch in the ducting system, forward of the compressor, which could be opened when the jet motor is throttled back to allow air to bleed to the free stream. This would permit continued operation in the noncritical inlet-velocity-ratio range, and control could be made similar to the aforementioned butterfly valve. This last method of bleeding air through the duct and the first method using the flexible ramp would also eliminate the low critical Mach numbers that result from high negative pressures over the outside of the lip at low inlet-velocity ratios. A further advantage of any of these mechanical devices is that they also would facilitate starting the jet-engine in high-speed flight by lowering the air velocity through the combustion chamber to that necessary for flame propagation. In the consideration or selection of instability-eliminating devices such as those described, it is of prime importance that the device should cause no decrease in ram when not in use. When the device is in use, however, any loss in ram resulting from its operation will be of minor importance, since the unstable regime usually occurs with the airplane at high speed and the jet motor throttled. If the ducting could be so designed that a single NACA submerged entrance would lead to a single jet engine, this instability would not occur. For a jet installation on a swept—back wing, where the use of nacellos for the jet engines incurs a premature drag rise (reference 3), this principle might be applied advantageously by locating the jet engines in the fuselage. COMPTENDED ATA 1071 #### CONCLUSIONS From this experimental investigation of an NACA submerged duct installation and the comparison with wing leading-edge inlets it is concluded that: - 1. For a completely jet-propelled aircraft with the jet engine in the fuselage, NACA submerged entries merit serious consideration as a means of supplying air to the jet engine. For this installation, NACA submerged duct entries gave higher pressure recovering at the entrance to the jet engine than wing leading-edge inlets throughout the flight speed range. - 2. The critical Mach number (0.75) of this MACA submerged duct is greater than that of the basic wing sections used on present-day fighters. - 3. For this type installation (a jet-propelled airplane with jet engine in the fuselage) the complexity of the duct and airplane structural design would be greatly reduced by using an NACA submorgaduct entry. - 4. A flow instability in the ducting system, which would not occur with wing leading-edge duct entries, could exist at low inlet-velocity ratios with twin NACA submerged air inlets. By proper selection of the high-speed inlet-velocity ratio, this condition could be precluded from ordinary flight. For high-speed-flight attitudes with the jet engine throttled, mechanical methods of alleviating the instability should be employed. Ames Aeronautical Laboratory, National Advisory Committee for Aeronautics, Moffett Field, Calif. COMPEDITION A STANSON OF THE PROPERTY OF THE PARTY TH #### REFERENCES - 1. Frick, Charles W., Davis, Wallace F., Randall, Lauros M., and Mossman, Emmet A.: An Experimental Investigation of NACA Submerged-Duct Entrances. NACA ACR No. 5120, 1945. - 2. von Karman, Th.: Compressibility Effects in Aerodynamics. Jour. Aero. Sci., vol. 8, no. 9, July 1941, pp. 337-356. - 3. H. Ludweig: Pheilflugel bei hohen Geschwindigkeiten (Swept-back Wings at High Velocities). Rep. No. 127 Lilienthal-Geselschaft für Luftfahrtforschung. Sept. 1940. COMMITTEE ## TABLE I. - FULL-SCALE GEOMETRIC WING AND FLAPS CHARACTERISTICS FOR THE FIGHTER AIRPLANE #### CONFIDENCIAL | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | |--------------|---|--|---|---|--|--|---|---|---|--|--|---|--|---|---|--| Area, s | q ft | | | | | | |
 | | | | | 1 | 100 | . 21 | | Span, f | t . | | | • | | | | | | • | | • | | | 48 | | | M.A.C., | in. | • • • • | | | • | | | | | | | | • | | 10 | | | Root ch | ord, | in. | | | • | | | | | | | | • | | | L4(| | Tip cho | rd, i | n | | | • | | • | • | | | | | | • | • | 60 | | Root se | ction | | | | ٠ | | • | | • | | 66 | (2) | 5) | - 2] | 4-1 | L.(| | rib sec | tion | | | | • | | • | • | • | • | 65 | (1] | .2) | -23 | L3-I | L.(| | Geometr | ic tw | ist, | deg | ζ. | • | | • | | | | • | | | | • | 2 | | ABDect | ratio | | | | | | _ | _ | _ | _ | _ | | _ | _ | 5 | 71 | | Taper r | at10 | | | | | 4.14 | 5-1-2 | _ | _ | _ | | | _ | _ | - 2. | . उ | | TUCTGEN | CB at | root | , or | iora | , a | eg : | | | • | • | • | | | • | | | | Dihedra | lof | chord | l pl | lane | , d | eg | • | • | • | • | • | | • | • | • | 6 | | _ | | | | . 1 | | | | | | | | | | | | | | 8
Madal a | | | | | | | | | | | | | | | | | | rotal a | rea, | sq It | • | • • | • • | • • | • | • , | • | • | • | • • | • | • | کور | ٤. | | Over-al | T abs | n, It | • | • • | • | • , • | • | • | • | • | • • | • | : | • | 22. | 5 | | ottota . | • • | • • • | • | • • | . • | • . • | • | - 6 3 | , p | ΩŢ. | A 41 | | M T | mR. | CHIC | 7.0 | | ravel, | geg | • • • | • | • | | • • | • | • | • | • | • (| • | • | 0 | to | | | ring ar | ea ar | recte | α, | BQ | It, | • , ; • , | • | ٠ | • | • | • • | • _ • | . • | _ | 551 | | | rype . | • • | • • • | • | • • | • | | | | | | | | | | | | | | | | | | | A Sales | | | | | | | | | | | | | | | razilari
Kabi | | | | , | ed | ge | , a | nd | | | | | | | | | | | | | | 100 | | | | | 71 | Xec | 1 t | TAC | k a | | | Root se
Fip sec
Geometr
Aspect
Taper r
Inciden
Dihedra
Fotal a
Cver-al
Chord .
Fravel,
Ving ar | Root section Tip section Geometric tw Aspect ratio Inper ratio Incidence at Dihedral of Section Fotal area, Over-all spa Chord Iravel, deg Ving area af | Root section Tip section Geometric twist, Aspect ratio Incidence at root Dihedral of chord State area, sq ft Over-all span, ft Chord Travel, deg | Root section Tip section Geometric twist, deg Aspect ratio Incidence at root of Dihedral of chord pl B Total area, sq ft Dver-all span, ft Chord Travel, deg Ying area affected, | Root section Tip section Geometric twist, deg Aspect ratio Incidence at root chord Dihedral of chord plane Source all span, ft Chord Travel, deg Fing area affected, sq | Root section Tip section Geometric twist, deg Aspect ratio Incidence at root chord, d Dihedral of chord plane, d Botal area, sq ft Over-all span, ft Chord Travel, deg Fing area affected, sq ft | Root section Tip section Geometric twist, deg Aspect ratio Taper ratio Incidence at root chord, deg Dihedral of chord plane, deg Fotal area, sq ft Over-all span, ft Chord Travel, deg Ving area affected, sq ft Type | Root section Tip section Geometric twist, deg Aspect ratio Taper ratio Incidence at root chord, deg Dihedral of chord plane, deg Fotal area, sq ft Over-all span, ft Chord Travel, deg Ving area affected, sq ft Type Ext | Root section Fip section Geometric twist, deg Aspect ratio Taper ratio Incidence at root chord, deg Dihedral of chord plane, deg Fotal area, sq ft Over-all span, ft Chord Fravel, deg Ving area affected, sq ft Type Exten | Root section Fip section Geometric twist, deg Aspect ratio Taper ratio Incidence at root chord, deg Dihedral of chord plane, deg Fotal area, sq ft Over-all span, ft Chord 23 p Fravel, deg Ving area affected, sq ft Type Extensi | Root section Fip section Geometric twist, deg Aspect ratio Taper ratio Incidence at root chord, deg Dihedral of chord plane, deg Fotal area, sq ft Over-all span, ft Chord Fravel, deg Ving area affected, sq ft Type Extensible | Root section Fip section Geometric twist, deg Aspect ratio Incidence at root chord, deg Dihedral of chord plane, deg Fotal area, sq ft Over-all span, ft Chord Fravel, deg Ving area affected, sq ft Type Extensible-afixed var | Root section Fip section Geometric twist, deg Aspect ratio Taper ratio Incidence at root chord, deg Dihedral of chord plane, deg Fotal area, sq ft Over-all span, ft Chord Fravel, deg Ving area affected, sq ft Type Extensible-slo fixed vane edge and op | Root section Fip section Geometric twist, deg Aspect ratio Incidence at root chord, deg Dihedral of chord plane, deg Fotal area, sq ft Over-all span, ft Chord Fravel, deg Ving area affected, sq ft Type Extensible-slotte fixed vane on edge and opera | Root section Fip section Geometric twist, deg Aspect ratio Faper ratio Incidence at root chord, deg Dihedral of chord plane, deg Fotal area, sqft Over-all span, ft Chord Fravel, deg Ving area affected, sqft Fype Fixed vane on legeand operati | Tip chord, in. Root section Tip section Geometric twist, deg Aspect ratio Incidence at root chord, deg Dihedral of chord plane, deg | GONFIDEN TIAL COLUMN TO THE PROPERTY OF THE PROPERTY OF THE PARTY TH NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS TABLE II.— DUCT TOTAL HEAD LOSSES MEASURED AT THE SIMILATED ENTRANCE TO THE JET-ENGINE FOR THE 1/4-SCALE FLOW MODEL OF THE FIGHTER AIRPLANE WITH FLAPS RETRACTED CONFIDENTIAL | | | | | | | | - | | <u> </u> | | | | | | | | 1- | |----------------------|--------|-------|-------|-------|-------|-------|--------|--------|----------|-------|-------|-------|-------|-------|-------|-------|----------| | MACA submerged ducts | | | | | | | | | | | | | | | | | | | V1 0 0 | -3.04 | -2.02 | -1.CI | 0 | 1.02 | 2:05 | 3.06 | 4.07 | 5.08 | 6.10 | 7.11 | 8.13 | 9.14 | 10.14 | 11.14 | 12.13 | | | 0.2 | 0.220ª | 0.210 | 0.189 | 0.183 | 0.210 | 0.173 | 0.183 | 0.215 | 0.253 | 0.281 | 0.309 | 0.330 | 0.343 | 0.357 | 0.358 | 0.355 | | | -3 | .193 | .178 | .157 | .247 | .157 | .168 | .189 | .204 | .228 | .252 | .262 | .279 | .295 | .314 | .309 | | | | .4 | .157 | .142 | .126 | .122 | .122 | .136 | .153 | .169 | .188 | .191 | .200 | .211 | .226 | .237 | .261 | .252 | | | .5 | .126 | .120 | .105 | .095 | .095 | .100 | .115 | .131 | .138 | .138 | .143 | .157 | .168 | .179 | .189 | .189 | | | .6 | .110 | .111 | .100 | .079 | .074 | .085 | .090 | .100 | .105 | .110 | .110 | .121 | .127 | .132 | .244 | .147 | | | •7 | .110 | .100 | .090 | .079 | .067 | .073 | .079 | .085 | .090 | .094 | .104 | .110 | .115 | .119 | .124 | .130 | | | .8 | .121 | .105 | .095 | .079 | .069 | .074 | .079 | .084 | .090 | .094 | .104 | :116 | .121 | .120 | .133 | .139 | | | 1.0 | .163 | .157 | .137 | .117 | .104 | .095 | .094 | .100 | .106 | .116 | .121 | .132 | .142 | .158 | .247 | .261 | | | 1.2 | .201 | .192 | .172 | .142 | .136 | .136 | .130 | .130 | .145 | .159 | .173 | .183 | .192 | .268 | .302 | .320 | | | 1,4 | .286 | .282 | .264 | .219 | .240 | .230 | .225 | .235 | .238 | .264 | .277 | .292 | .299 | .324 | -373 | .403 | | | 2.0 | .524 | .556 | .556 | .556 | .546 | .516 | .513 | .513 | | .546 | .546 | .568 | .600 | .ట8 | .680 | .680 | | | 2.2 | .622 | .618 | .666 | .666 | .618 | .666 | .666 | .666 | .666 | .666 | .687 | .722 | .708 | .736 | .816 | .819 | | | 2.5 | .652 | .694 | .715 | .736 | .762 | .782 | .782 | .782 | -799 | .841 | .858 | .820 | .840 | .882 | .883 | .966 | L | | 3.0 | .909 | .999 | 1,063 | 1.060 | 1.090 | 1.121 | 1.186 | 1.218 | 1.249 | 1,242 | 1.303 | 1.273 | 1.303 | 1.324 | 1.324 | 1.393 | | | | | | | | | Wi | ng loa | ling • | lge du | ots | | | i | | | | | | ¥400 | -3.04 | -2.02 | -1.01 | 0 | 1.02 | 2.05 | 3.06 | 4.07 | 5.08 | 6.10 | 7.11 | 8.13 | 9.14 | 10.14 | 11.14 | 12.13 | | | 0.21 | 0.439 | 0,233 | 0.145 | 0.082 | 0.068 | 0.062 | 0.063 | 0.057 | 0.063 | 0.080 | 0.096 | 0.130 | 0.167 | 0.159 | 0.136 | 0.132 | | | .43 | .423 | .299 | | .125 | | | .111 | .111 | .133 | | 1- | .216 | | 1 | .243 | | _ | | .65 | .194 | .330 | .205 | .182 | .182 | .184 | .187 | .198 | .221 | .259 | .293 | .364 | .441 | .519 | .494 | .515 | L | | .87 | .536 | -328 | .242 | .252 | .249 | .261 | .283 | ,306 | .351 | .383 | | ,501 | .591 | .706 | .744 | .570 | _ | | 1.08 | .631 | .407 | -355 | .362 | .381 | .390 | .411 | .443 | .491 | .546 | + | | .858 | .909 | .988 | | - | | 1.3C | .660 | .455 | ,443 | .456 | .470 | | .515 | .556 | | | -75 | .858 | | 1.058 | | | ├ | | 1.52 | .685 | .598 | .509 | .598 | .596 | .64 | .685 | .727 | .808 | .877 | | | | 1.328 | | | - | | 2.17 | 1.314 | 1.261 | 1.261 | 1,332 | 1,408 | 1.462 | 1.524 | 1.622 | 1.729 | 1.85 | 1.996 | 2,200 | 2.300 | 2.389 | 2.440 | 2.440 | <u> </u> | [&]quot;Value based on free-stream dynamic pressure AH/qo. NATIONAL ADVISORY TABLE III. - DUCT TOTAL-HEAD LOSSES, MEASURED AT THE SIMULATED ENTRANCE TO THE JET-ENGINE, FOR THE 1/4-SCALE FLOW MODEL OF THE FIGHTER AIRPLANE WITH FLAPS DEFLECTED 50° | | | | | | | MACA sub | merged d | lucts | | | | | | | |-------|-------|-------|-------|-------|-------|----------|----------|---------|-------|-------|--------------|--------------|-------|-------| | Vi a | -8.05 | -7.03 | -6.01 | -5.0 | -3.99 | -2.97 | -1.95 | -0.94 | 0.08 | 1.10 | 2.12 | 3.12 | 4.12 | 5.13 | | 0.2 | 0.297 | 0.198 | 0.172 | 0.193 | 0.193 | 0.178 | 0.194 | 0.227 | 0.266 | 0.303 | 0.330 | 0.348 | 0.378 | 0.360 | | -3 | .238 | .188 | .168 | .168 | .167 | 192 | .203 | .231 | .250 | .282 | .308 | .320 | .325 | -339 | | .4 | .193 | .173 | .145 | .139 | .145 | .157 | .172 | .197 | .214 | .223 | .245 | .247 | .265 | .256 | | .5 | .150 | .136 | .120 | .121 | .121 | .126 | .142 | .157 | .169 | .178 | .189 | .188 | .194 | •200 | | .6 | .126 | .115 | .105 | .101 | .100 | .100 | .110 | .119 | .132 | .137 | .136 | .137 | .142 | .148 | | .7 | .121 | .111 | .111 | .091 | .090 | .065 | .095 | .100 | .111 | .115 | .122 | .119 | .125 | .126 | | .8 | .122 | .111 | .100 | .091 | .086 | .085 | .085 | .093 | .105 | .111 | .114 | .119 | .125 | .126 | | 1.0 | .145 | .136 | .125 | .115 | .111 | .106 | .105 | .111 | .116 | .126 | .132 | .142 | .142 | .142 | | 1.2 | .192 | .191 | .174 | .158 | .147 | .138 | .133 | .143 | .154 | .164 | .165 | .170 | .175 | .186 | | 1.4 | .285 | .271 | .253 | .242 | .232 | .232 | .253 | .238 | .238 | .248 |
.261 | .282 | .292 | .294 | | 2.0 | .537 | .558 | •592 | .614 | .601 | .601 | .580 | .570 | .558 | .558 | .548 | .546 | .558 | .580 | | 2.2 | .622 | .610 | .618 | .652 | .673 | .708 | .639 | .652 | .673 | .673 | .639 | .618_ | .639 | .673 | | 2.5 | .694 | .673 | .715 | .736 | -795 | .816 | -799 | .837 | .837 | .820 | .841 | .841 | .841 | .841 | | 3.0 | .883 | .912 | .942 | 1.030 | 1.059 | 1.090 | 1.090 | 1.118 | 1.178 | 1.207 | 1.207 | 1.207 | 1.265 | 1.265 | | 1 | + | | | | | fing lee | ding-edg | o ducts | | | , | , | | | | Vi Vo | -8.05 | -7.03 | -6.01 | -5.00 | -3.99 | -2.97 | -1.95 | -0.94 | 0.08 | 1.10 | 2.12 | 3.12 | 4.12 | 5.13 | | 0.21 | 0.094 | 0.068 | 0.055 | 0.055 | 0.054 | 0.055 | 0.070 | 0.082 | 0.118 | 0.169 | 0.206 | 0.244 | 0.220 | 0.218 | | .43 | .136 | .110 | .103 | .104 | .111 | .119 | .149 | .161 | .220 | .291 | .366 | .401 | .408 | .386 | | .65 | .180 | .165 | .168 | .168 | .189 | .209 | .234 | .282 | -359 | .434 | .505 | .505 | .522 | .558 | | .87 | .234 | .249 | .259 | .271 | .295 | .332 | .366 | .435 | .512 | .616 | .722 | .855 | .857 | .828 | | 1.08 | .350 | .352 | ,364 | .388 | .129 | .461 | .540 | .602 | .696 | .790 | .940 | 1.063 | .963 | 1.029 | | 1.30 | .166 | .477 | .494 | .508 | .546 | .602 | .670 | -755 | .839 | .968 | 1.106 | 1.156 | 1.318 | 1.238 | | 1.52 | .598 | .597 | .627 | .674 | .704 | .772 | .860 | .968 | 1.079 | 1.190 | 1.346 | 1.356 | 1.456 | 1.467 | | 2.17 | 1.255 | 1.221 | 1.355 | 1.344 | 1.445 | 1.498 | 1.567 | 1.671 | 1.809 | 1.929 | 2.032 | 2.170 | 2.362 | 2.400 | Nalue based on free-stream dynamic pressure AE/qo. CONCIDENTIAL TABLE IV. - PRESSURE DISTRIBUTION OVER THE LIP OF THE SUBVERGED DUCT ENTRY FOR THE 1/4-SCALE FLOW MODEL OF THE FIGHTER AIRPLANE | 11p 1.8. (1n.) | | Matched conditions at sea level, propeller removed | | | | | | | | | | | | | | |--|-----------------------------|--|-----------------|--|-------------|-------------|--|--------|--------|-------------|--------|--------------|-------------|-------------|--------| | 10.54 | | | 1.47 | 0.84 | 0.83 | 0.21 | 0.06 | 0 | 0.06 | 0.21 | 0.84 | 1.47 | 2.09 | 4.59 | 5.84 | | 0.54 | Vi/Vo | 2 | | | Ine | 1de | | > - | | | | Outs | 1de | | | | 1.00 | 0.54 | -0.8 | 0.529 | 0,504 | 0.534 | 0.683 | 0.913 | | 0.035 | -0.359 | -0.419 | -0.334 | -0.289 | -0.065 | -0,090 | | 1.00 | .75 | 1 | .234 | .188 | .198 | .254 | .519 | .978 | .112 | 173 | 316 | 290 | 249 | 087 | 11 | | 1.20 | .80 | 0 | .153 | .092 | .097 | .127 | .382 | .987 | ,249 | 122 | 285 | 280 | 244 | 087 | 11 | | 1.40 | 1.00 | .5 | -,241 | 371 | 391 | 492 | 431 | .841 | .641 | 070 | 201 | 241 | -,221 | 110 | 13 | | 1.60 | 1.20 | 1.2 | 672 | 853 | 933 | -1.193 | -1.445 | .722 | .833 | •070 | 181 | 241 | 261 | 171 | 19 | | 1.60 | 1.40 | 1.9 | -1.093 | -1.223 | 1.440 | -1.917 | -2.533 | .318 | .926 | .170 | 119 | 239 | 278 | 209 | 22 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 2.8 | -1.745 | -2.039 | -2.233 | -3,039 | -4.350 | 647 | .980 | •230 | 020 | 196 | 235 | -,216 | -,28 | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2.00 | 4.8 | -2,980 | -3.470 | -3.823 | -5.195 | -8.160 | -2.941 | .882 | •177 | .020 | 216 | 333 | -,333 | - 35 | | V1/Vo P Inside O.434 O.999 O.434 O.890 O.448 O.819 O.519 O.519 O.392 O.310 O.108 .44 O .636 .590 .636 .612 .986 .499 802 467 502 388 304 106 .47 O .582 .562 .602 .771 .967 .578 663 467 502 388 304 106 .52 O .550 .529 .570 .729 .945 .647 582 460 476 379 304 108 .58 O .491 .460 .498 .636 .894 .791 388 445 367 300 109 .62 O .428 .393 .422 .544 .810 .850 290 318 347 324 284 098 .65 O .355 . | 2.20 | 6.0 | -3.720 | -4.240 | -4.800 | -6.620 | 10.540 | -4.740 | .720 | •140 | 0 | 280 | 440 | 460 | - 48 | | .44 0 .636 .590 .636 .612 .986 .499 802 467 502 388 304 106 .47 0 .552 .562 .602 .771 .967 .578 603 460 487 379 304 108 .52 0 .550 .529 .570 .729 .945 .647 562 460 487 379 304 108 .58 0 .491 .460 .495 .636 .894 .791 386 389 445 367 300 109 .62 0 .428 .393 .422 .544 .810 .850 290 318 389 347 284 098 .65 0 .355 .312 .429 .704 .911 107 268 389 347 284 098 .61 0 .355 .310 | 41\Nº | 0 2 | ~ | | Ine | . de | T | | | | T | Outs | 1 | | | | .44 0 .588 .590 .682 .771 .967 .578683460487579504108 .52 0 .550 .529 .570 .729 .945 .647582460476379305 .110 .58 0 .491 .460 .496 .636 .894 .791396396445367300109 .62 0 .428 .393 .422 .544 .810 .850290318399347284098 .66 0 .356 .315 .342 .429 .704 .911107266369322275101 .73 0 .257 .209 .225 .289 .554 .972 .072241321297265096 .81 0 .091 .030 .030 .040 .334 .980 .323131283283253091 .94 0147254267320214 .947 .847067214240227107 1.16 0840820860 -1.120 -1.300 .680 .820 0060140160060 1.46 0 -1.548 -1.806 -1.988 -2.463 -3.450323 .968 .194 .066032066032 1.81 0 -4.066 -4.668 -4.933 -7.265 -9.580 -4.652 .734 .333 .267 .133 0 .048 0 | 0.41 | 0 | 0.622 | 0.606 | 0.853 | 0.034 | 0.999 | 0.434 | -0.890 | -0.449 | -0.519 | -0.392 | -0.310 | -0.108 | -0.13 | | .47 0 .582 .582 .582 .573 .729 .945 .647862460476379305 .110 .58 0 .491 .460 .496 .636 .894 .791396396445367300109 .62 0 .428 .393 .422 .544 .810 .850290318399347284098 .66 0 .356 .315 .342 .429 .704 .911107266369322275101 .73 0 .257 .209 .225 .289 .554 .972 .072241321297265096 .81 0 .091 .030 .030 .040 .334 .980 .323131283283253091 .94 0147254267320214 .947 .847067214240227107 1.16 0840820860 -1.120 -1.300 .680 .820 0060140160060 1.46 0 -1.548 -1.806 -1.988 -2.463 -3.450323 .968 .194 .066032066032 1.81 0 -4.066 -4.668 -4.933 -7.265 -9.580 -4.632 .734 .333 .267 .133 0 0 | .44 | 0 | .636 | .590 | .636 | .812 | .986 | .499 | 802 | 467 | 502 | 388 | + | | 13 | | .52 0 .680 .62 .636 .636 .894 .791398445367300109 .62 0 .428 .393 .422 .544 .810 .880290318389347284098 .66 0 .355 .315 .342 .429 .704 .911107268369322275101 .73 0 .257 .209 .225 .289 .554 .972 .072241321297268096 .61 0 .091 .030 .030 .040 .334 .980 .323131283283253091 .54 0147254267320214 .947 .847067214240227107 1.16 0840820860 -1.120 -1.300 .680 .820 0060140160060 1.46 0 -1.548 -1.808 -1.988 -2.423 -3.450323 .968 .194 .065032065032 1.61 0 -4.066 -4.566 -4.933 -7.265 -9.580 -4.532 .734 .333 .267 .133 0 0 | .47 | 0 | .582 | -5 62 | .602 | .771 | .967 | .578 | -,683 | 460 | -,487 | 379 | 304 | 108 | 14 | | .68 0 .491 .400 .498 .608 .608 .608 .608 .608 .608 .608 .60 | .52 | 0 | .550 | .529 | .570 | .729 | .945 | .647 | 582 | 460 | 476 | 379 | 305 | 110 | 13 | | .62 | .58 | 0 | .491 | .460 | .496 | .636 | .894 | .791 | 396 | -,398 | 445 | 367 | 300 | 109 | 10 | | .66 0 .356 .315 .342 .429 .704 .911107268369322275101 .73 0 .267 .209 .225 .289 .554 .972 .072241321297268096 .81 0 .091 .030 .030 .040 .334 .980 .323131283283253091 .94 0147254267320214 .947 .847067214240227107 1.16 0840820860 -1.120 -1.300 .680 .820 0060140160060 1.46 0 -1.548 -1.806 -1.988 -2.463 -3.450323 .968 .194 .066032068032 1.81 0 2.572 -3.048 -3.142 -4.478 -6.140 -1.999 1.000 .333 .190 .048 0 0 | | | | .393 | .422 | .544 | .810 | .650 | 290 | -,318 | 399 | 347 | 284 | -,098 | 12 | | .73 0 .257 .209 .225 .209 .324 .502 .502 .502 .502 .502 .502 .503 .503 .503 .503 .503 .503 .503 .503 | | | | | | | .704 | .911 | 107 | 266 | 369 | -,322 | 275 | 101 | 12 | | .61 O .091 .030 .030 .040 .334 .980 .523 131 283 283 253 091 .94 O 147 264 267 320 214 .947 .847 067 214 240 227 107 1.16 O 840 820 860 -1.120 -1.300 .680 .820 O 060 140 160 060 1.46 O -1.548 -1.968 -2.463 -3.450 323 .968 .194 .065 032 065 032 1.81 O 2.572 -3.048 -3.142 -4.478 -6.140 -1.999 1.000 .333 .190 .048 O O 2.17 O -4.068 -4.933 -7.265 -9.580 -4.632 .734 .333 .267 .133 O O | .73 | 0 | .257 | .209 | .225 | -289 | .554 | .972 | .072 | 241 | 321 | -,297 | 265 | 096 | 12 | | .94 0147254267320214 .947 .547067214240227107 1.16 0840820860 -1.120 -1.300 .680 .820 0080140160060 1.66 0 -1.548 -1.806 -1.968 -2.463 -3.450323 .968 .194 .065032068032 1.81 0 2.572
-3.048 -3.142 -4.478 -6.140 -1.899 1.000 .333 .190 .048 0 0 2.17 0 -4.068 -4.668 -4.933 -7.265 -9.580 -4.532 .734 .333 .267 .133 0 0 | | 0 | .091 | .030 | .030 | .040 | .334 | .980 | .323 | 131 | 283 | 283 | 253 | 091 | 1 | | 1.16 | •61 | | | | 267 | 320 | 214 | .947 | .847 | 067 | 214 | 240 | -,227 | 107 | 1 | | 1.66 | | | 1 | + | + | -1.120 | -1.300 | .680 | .620 | 0 | 080 | 140 | 160 | 060 | 0 | | 1.61 0 2.572 -3.048 -3.142 -4.478 -6.140 -1.899 1.000 .333 .190 .048 0 0 2.17 0 -4.066 -4.566 -4.933 -7.265 -9.580 -4.532 .734 .333 .267 .133 0 0 | .94 | | 840 | | 1 | | + | 923 | .968 | .194 | .066 | -,032 | 065 | 032 | 0 | | 2.17 0 -4.066 -4.668 -4.933 -7.265 -9.580 -4.532 .734 .333 .267 .133 0 0 | .94
1.16 | 0 | + | + | -1.968 | -2 -483 | -3.450 | 020 | | | | | | | | | | .94
1.16
1.46 | 0 | -1.548 | -1.906 | | | | + | + | .333 | .190 | ,048 | 0 | 0 | 0 | | 2,56 0 -7.55 -0.44 -9.22 -16.23 -16.88 -10.22 0 -111 -444 -222 0 0 | .94
1.16
1.46
1.81 | 0 0 | -1.548
2.572 | -1.806 | -3.142 | -4.478 | -6.140 | -1.999 | 1.000 | | + | | | + | 0 | COMMITTEE FOR AERONAUTICS ~~ ATA 1074. TABLE V.-WING FUSELAGE-JUNCTURE PRESSURE DISTRIBUTION (WITHOUT WING LEADING-EDGE DUCT ENTRIES INSTALLED) FOR THE 1/4-SCALE FLOW MODEL OF THE FIGHTER AIRPLANE | 43 | | | | | | P | | | | | |--|--|--|---|---|---|--|--|--|---|---| | chord | -4.05 | -2.02 | -1.01 | 0 | 1.02 | 2.05 | 4.07 | 6.10 | 5.13 | 10.14 | | | | | | U | pper surfa | ce | | | | | | 0
1.0
2.5
5.0
7.0
10
15
19
29
40
53 | -0.574
.749
.367
.526
.303
.231
-008
-167
-295
-396
-446
-391
-446 | -0.088
.868
.135
.223
.040
096
287
398
446
510
510
414
494 | 0.166
.720
.071
.0555
1253
545
545
569
443
538 | 0.346
.498
.048
145
305
570
643
627
658
474
586 | 0.490
.204
.008
363
514
604
718
776
726
726
670
498
621 | 0.617
120
.024
617
689
745
745
857
777
753
681
489
617 | 0.696
826
996
-1.077
-1.053
-1.044
-1.069
-1.061
907
858
736
486
648 | 0.604
-1.514
-1.575
-1.625
-1.495
-1.421
-1.347
-1.252
-1.045
776
466
662 | 0.423
-2.770
-2.300
-2.090
-1.860
-1.718
-1.552
-1.436
-1.128
980
730
407
573 | 0.186 -3.901 -2.990 -3.622 -2.268 -2.032 -1.773 -1.586 -1.190988656397510 | | : | | | | L | ower surfa | ce | | | | | | 1.0
2.5
5.0
7.5
10
15
20
30
40
50
60
70 | -1.474
956
709
646
622
566
526
430
414
422
422 | 908
598
430
422
407
335
335
367
382
231 | 609
419
240
246
346
340
301
308
340
372
222 | 305
233
217
241
257
289
297
257
273
361
127 | 041
073
106
155
188
229
245
216
253
294
343
216 | .216
.104
.024
040
080
144
168
152
184
240
296 | .551
.348
.202
.113
.049
032
073
113
146
211
275
178 | .516
.572
.392
.278
.204
.098
.033
016
082
155
237 | .938
.738
.537
.415
.332
.216
.141
.066
008
100
163
125 | 980
•850
•656
•526
•145
•316
•218
•121
•032
•065
•162
•113 | GONFIDENTIAL NATIONAL ADVISORY ## TABLE VI.-WING FUSELAGE-JUNCTURE PRESSURE DISTRIBUTION (WITH WING LEADING-EDGE DUCT ENTRIES INSTALLED) FOR THE 1/4-SCALE FLOW MODEL OF THE FIGHTER AIRPLANE #### CONFIDENTIAL. | % | | | | | P | | | | | | |--|---|---|---|---|--|--|--|--|--|---| | chord | -3.04 | -2.02 | -1.01 | 0 | 1.02 | 2.05 | 4.07 | 6.10 | 8.13 | 10.14 | | | | | | Upp | er surface | | • | | | | | 0
1.0
2.5
5.0
10
15
19
29
40
53
60
70 | -0.337
819
392
172
034
021
-1.287
-269
-275
-406
-489
-420 | 0.037
.730
.295
.034
134
214
448
402
342
463
516
428 | 0.306
.550
.095
.156
.374
.578
.503
.401
.523
.577
.455
.007 | 0.540
290
-162
-371
-486
-512
-695
-600
-479
-574
-600
-459 | 0.754
007
448
624
692
686
522
706
550
632
638
468 | 0.864321710551584531790616670656456 | 0.991
-1.105
-1.381
-1.381
-1.273
-1.146
-1.166
978
724
750
696
456 | 0.998 -2.083 -2.228 -1.968 -1.736 -1.510 -1.435 -1.183561540724431 | 0.924 -3.130 -3.040 -2.551 -2.171 -1.646 -1.615 -1.330971590720360 | 0.202
-2.910
-2.750
-2.480
-2.369
-2.848
-1.849
-1.457
-1.105
-568
-405 | | | | | | Low | er surface | | | | | i. si | | 1
2.5
5.0
7.5
10
15
20
30
40
50
70 | -1.287
846
598
626
516
530
489
365
365
392
413
241 | 918
656
448
523
422
446
315
328
362
369
235 | 570
435
333
374
360
272
299
340
367
231 | - 243
- 229
- 196
- 290
- 277
- 290
- 290
- 196
- 243
- 304
- 344
- 39 | .041
054
075
190
163
224
231
177
211
278
353
197 | .235
.050
.013
107
161
155
146
174
241
305
181 | .603
.345
.228
.050
.054
027
060
050
107
188
268
147 | .854
.574
.403
.246
.205
.096
.041
0
041
130
150 | .964
.733
.544
.387
.340
.217
.149
.082
.027
-075
-177 | 297
544
607
445
392
256
189
122
047
- 054
- 108 | CONFIDENTIAL NATIONAL ADVISORY TABLE VII.- PLAIM-WING PRESSURE DISTRIBUTION AT STATION 13.50, $1/\mu_{-}$ SCALE FLOW MODEL OF THE FIGHTER AIRPLANE #### CONFIDENTIAL P -4.05 -2.02 2.05 6.10 -1.01 0 1.02 4.07 8.13 10.14 chora Upper surface -0.964 -2.825 -1.560 -1.437 -1.356 0.544 0.972 0.906 -.506 -.424 0.715 -.908 -.689 -.673 0.130 -1.741 -1.263 -2.258 -3.855 -3.535 0 0.303 0.980 1.0 2.5 5.0 7.5 -5.310 -2.858 -2.250 -2.008 .513 .470 -.129 2554 -064 -159 -2551 -414 .553 .239 .159 -2.190 -1.318 -1.660 .063 -.177 -.289 -.980 -.964 -.931 -.850 -.810 -.490 -.538 -.370 -.292 -.689 -1.544 -1.361 -1.295 -1.071 -.946 -.822 -.672 -.415 -1.562 -1.562 -1.441 -1.150 -.769 -.558 - 442 -.301 -.596 -.520 -1.290 -1.168 10 -.729 15 20 -.064 -.498 -.563 -. 364 -.721 -.753 -.721 -.715 -.715 -.697 -.183 -.478 686 -1.143 30,450,60 -.498 -.538 -.577 -.593 -.514 -.980 -.906 -.825 -.727 -.287 -.375 -.446 -.595 -.611 -.678 -.686 -.470 -.534 -.558 -.635 -.659 -.770 -.704 -.694 -.686 - 494 E20 | 10 | 422 | 494 | 514 | 530 | 530 | 529 | 515 | 490 | → 415 | 389 | |--|---|--|---|--|---|--|---|---|--|--| | | | | | L | ower surfa | ce | | | | | | 1.0
2.5
5.0
7.5
10
15
20
30
40
50
60
70 | -1.785
-1.036
916
789
662
582
590
470
438
438
263 |
860
638
542
502
446
430
438
367
383
383
398
239 | - 458
- 396
- 379
- 379
- 340
- 356
- 364
- 332
- 364
- 372
- 237 | 113
177
366
257
241
273
313
239
305
338
354
273 | .188
.024
082
131
136
253
245
269
310
335
253 | .441
.216
.072
008
016
096
160
176
208
264
296 | .769
.486
.292
.186
.138
.032
040
154
219
267
-,186 | .956
.719
.506
.368
.294
.171
.082
016
082
163
228
163 | .971
.872
.664
.523
.432
.290
.174
755
005
105
133 | .590
.939
.777
.632
.551
.397
.275
.146
040
057
146
113 | COVERNATIAL NATIONAL ADVISORY # TABLE VIII. - PRINCER DISTRIBUTION OVER THE WING LEADING-EDGE BUCT ENTRANCE, 1/4-SCALE FLOW MODEL OF THE PROFITER AIRTHAND [v₁/v_o = 0] | | | | | P | ······································ | | | | | |--|--|--|--|---|--|---|---|--|---| | chord | -3.04 | -2.02 | -1.01 | 1.02 | 2.05 | 4.07 | 6.10 | 8.13 | 10.14 | | | | | | Upper St | urface | | | | , | | 0
1.0
2.5
5.5 | 0.978
.313
.100
120
153 | 0.818
.073
080
266
273 | 0.493
236
323
459
425 | -0.797
-1.011
877
850
730 | -1.745
-1.456
-1.160
-1.072
889 | -4.703
-2.364
-1.824
-1.505
-1.218 | -5.889
-3.546
-2.569
-1.984
-1.584 | -5.930
-4.730
-3.283
-2.432
-1.914 | -3.022
-2.057
-2.042
-2.168
-2.266 | | 10
15
20
30
40
50
60 | - 206
- 253
- 339
- 406
- 486
- 526
- 459 | 286
3996
519
559
486 | 385
411
459
499
560
512 | 529
566
572
622
482 | 708
640
634
626
667
654
485 | 912
812
759
712
718
678
486 | -1.135
998
883
808
774
700 | -1.335
-1.150
978
792
806
711 | -2.030
-1.557
900
690
584
518 | | | | <u> </u> | | per Inne | | 0 | | | | | 1
2.5
5 | .186
.726
.726 | .186
.812
.825 | .196
.890
.890 | .221
.958
.944 | 452
-977
-977 | .226
.992
.978 | .910
.999
.979 | .232
.998
.984 | .860
.998
.985 | | | 4 | | | wer Inne | r Surfac | e | | , | · | | 4.2
5.7 | .672
.712 | .798
.818 | .884
.890 | .978 | .991
.964 | . 985
. 952 | .965
.938 | .936
.930 | . 939 | | | | | | | Burface | | | 1 0:0 | 01.6 | | 2272722222222
580383333333
112345363 | -1.171
-2.0177
-1.517
-1.152
5598
4392
4393
4133
246 | -1.024
-1.679
-1.27466
-76066
-439366
-337936
-73793 | -2.090
-1.342
-1.0316
600
499
495
374
331
364
223 | 670
610
529
342
241
241
241
248
281
322
194 | 067
303
310
290
196
169
182
202
216
256
303
182 | .679
.186
.067
-027
-013
.013
-057
-1146
-193
-260
-153 | .938
.544
.367
.2857
.150
.054
075
136
211
129 | 958
.786
.602
.417
.344
.258
.007
-0757
-153 | .946
.788
.447
.379
.2637
.013
.013
164
125 | # TABLE IX.— PROSSURE DESTRIBUTION OFER THE VIDO LEADING-EDGE DUCT BEFORENCE, 1/k—ocale vion model of the progress addplace $\{V_1/V_C=0.2\}$ | | | | | | P | | | | | | |------------|--------------|--------------|-------------|--------------|-----------|---------|----------|------------|-----------------|------------------| | chord | -3.04 | -2.02 | -1.01 | 0 | 1.02 | 2.05 | 4.07 | 6.10 | 8.13 | 10.14 | | | | | | | Upper Su | rface | | | | | | 0 | 0-990 | J.966 | 0.768 | 0.337 | -,353 | -1.152 | -3,339 | -5.988 | -5.950 | -3,320 | | 1.0 | -441 | 187 | 109 | 452 | -,882 | -1.319 | -2.158 | -3.309 | -4.480 | -2.159
-2.240 | | 2.5 | .193 | 013 | 251 | 512 | 828 | -1.071 | -1.675 | -2.432 | -3.160 | | | 5.0 | 069 | 228 | 414 | 600 | 822 | -1.018 | -1.449 | -1.920 | -2.380 | -2.390 | | 7.5 | 117 | 248 | 401 | 540 | 720 | 851 | -1.166 | -1,531 | -1.975 | -2.429 | | 10 | | | | | | | | | | -1.869 | | 15 | 186 | 281 | 387 | 486 | 598 | 690 | 894 | -1.114 | -1.318 | | | 20
30 | 241 | 315 | 407 | 499 | 530 | 616 | 784 | 977 | -1.135 | -1.410 | | 30 | 330 | 389 | 462 | 526 | -,564 | 623 | 744 | 868 | 850 | 736 | | 40 | 392 | 435 | 509 | 553 | 578 | 623 | 703 | 786 | • | 628 | | 50 | 432 | 516 | 564 | 594 | 625 | 656 | 717 | 766
690 | 794 | 520 | | 60 | 523 | 550 | 591 | 614 | 632 | 650 | 670 | | 672 | 412 | | 70 | 454 | 476 | 509 | 520 | 482 | -,489 | 482 | 458 | 415 | 7.412 | | | | | | קיקינו | or Inner | Surface | | | | | | 1 | .117 | .127 | .156 | .161 | .177 | .181 | .181 | .178 | .176 | .135 | | 2.5 | .317 | .502 | .632 | .769 | 856 | -904 | .951 | .984 | .998 | .978 | | 5 | .351 | .562 | .848 | .897 | .916 | .924 | -938 | .950 | .930 | .910 | | | <u> </u> | - | | | Lower St | urface | <u> </u> | | <u></u> | | | 3.2 | 151 | 134 | 081 | .223 | •530 | .736 | .972 | 956 | .714 | .532 | | 4.2 | 1.562 | -1.220 | 916 | 600 | 326 | 080 | -335 | 670 | 882 | 1890 | | 5.7 | 1.321 | -1.220 | 828 | 587 | 380 | 187 | 147 | -444 | .666 | 702 | | 8.2 | 1.032 | 858 | 686 | 512 | 374 | 241 | .020 | 260 | 455 | 499 | | 10.7 | 798 | 670 | 544 | 405 | - 299 | 201 | •007 | 205 | .367 | 405 | | 13.2 | 631 | 563 | 475 | 364 | 265 | 161 | 007 | 171 | 306 | .371 | | 13.2 | 544 | 462 | 387 | 304 | 224 | 147 | 013 | 116 | .238 | .290 | | 23.2 | 495 | - 429 | 374 | - 207 | -,224 | 161 | 047 | .062 | 170 | 216 | | 33.2 | 434 | 332 | 340 | - 290 | 238 | 194 | 114 | - 027 | .054 | .088 | | 43.2 | 599 | 362 | 319 | 283 | 245 | 208 | 141 | 075 | 007 | .020 | | 53.2 | 413 | 382 | 353 | 317 | 279 | -,248 | 194 | 137 | 075 | 061 | | 63.2 | 413 | 389 | 380 | 344 | 319 | 302 | 261 | 205 | 163 | 155 | | 73.2 | 255 | 235 | 232 | 202 | 190 | -,181 | 181 | 144 | 115 | 115 | | | 1 | 4 | <u> </u> | Low | er Inner: | Surface | <u> </u> | | _ _ | | | 4.0 | -716 | .844 | .936 | .951 | -950 | .938 | .924 | .902 | -652 | -594 | | 4.2
5.7 | .564 | .737 | .869 | .991 | -396 | 904 | 898 | 888 | .810 | .762 | | | | 1 4/3/ | 1 4003 | | | | | | | | CONFIDENTIAL NATIONAL ADVISORY TABLE X.— PRESSURE DISTRIBUTION OWER THE WING LEADING-EDGE DUCT ENTRANCE, 1/4-SCALE FLOW MODEL OF THE FIGHTER ATEPLANE [$V_1/V_0 = 0.4$] | | | | - | | P | | | | | | |---|--|---|--|--|--|---|--|--|---|---| | chord | -3.04 | -2.02 | -1.01 | 0 | 1.02 | 2.05 | 4.07 | 6.10 | 8.13 | 10.14 | | - | | | | U | pper Sur | face | | | | | | 0
1.0
2.5
5.0
7.5
10
15
20
30
40
50
60 | 0.972
.486
.246
040
093
186
326
386
519
519 | 0.986
.260
.047
-199
-226
-313
-386
-439
-512
-552 | 0.8144
067
234
1401
395
1462
5562
5582
5599 | 0.509
588
588
536
536
499
5549
5596
516 | -0.094
-796
-789
-7895
-5556
-557
-5564
-628
-486 | -0.840
-1.0392
-1.0392
-6610
-5520
-6550
-6550
-6550 | -2.956
-2.063
-1.634
-1.424
-1.154
790
742
705
715
674
486 | -7.065
-3.155
-2.472
-1.495
-1.495
-1.112
-978
-964
-776
-777
-777 | -4.389
-3.161
-2.378
-1.880
-1.315
-1.126
970
8576
554 | -3.800
-2.508
-2.478
-2.604
-2.21
-1.810
-1.333
-666
-640
-540 | | 10 | 477 | 1 - 417 | 1505 | | | Surface | <u> </u> | | | | | 1
2.5
5 | 0.013
.080
.226 | 0.027
.246
.652 | 0.060
.482
.850 | 0.074
.730
.851 | 0.081
.769
.863 | 0.087
.830
.878 | 0.074
.898
.918 | 0.067
.938
.878 | -0.142
-964
-870 | -0.027
•953
•832 | | | | | | Lo | wer Surf | | | | | | | 3.2
4.2
5.7
80.7
13.2
18.2
23.2
23.2
43.2
63.2
73.2 | 0.426
1.340
1.200
758
652
532
426
106
113 | 0.453
-1.065
984
639
572
426
326
380
393
240 | 0.516
743
737
643
514
368
3555
315
368
368
221 | 0.683
449
516
4962
342
295
281
275
308
342
208 | 0.863
182
304
324
283
236
203
243
243
284
317
182 |
0.958
.054
-107
-282
-168
-147
-134
-209
-214
-255
-302 | 0.985
.439
.216
.054
.020
0
.040
108
142
196
250
175 | 0.770
.743
.462
.288
.214
.167
.114
.737
027
067
134
201 | 0.314
.917
.6948
.317
.2478
.317
.2496
.008
.008
.77 | 0.080
.932
.7546
.446
.393
.306
.2337
.040
040 | | <u></u> | | | 1- 0- | Low | | | | | 0 (5) | | | 4.2
5.7 | 0.626°
.506 | 0.772 | 0.870
.803 | 0.877 | 0.870
.823 | 0.858 | 0.810
.790 | 0.764
.737 | 0.654
.870 | 0.167
.606 | NATIONAL ADVISORY | a a | P | | | | | | | | | |-----------------------------------|---|--|--|--|---|---|--|---|--| | chord a | -2.02 | -1.01 | 0 | 1.02 | 2.05 | 4.07 | 6.18 | g.13 | 10.14 | | Upper surface | | | | | | | | | | | 0
1.0
7.5
10
15
30 | 0.730
.428
129
217
285
401 | 0.556
.040
.379
355
395
466 | 0.958
275
416
469
496
522 | 0.998
778
590
623
623
610 | 1.000
-1.270
740
774
734
666 | 0.797
-2.412
-1.058
-1.052
938
777 | 0.442
-3.740
-1.405
-1.350
-1.167
903 | -0.121
-5.200
-1.755
-1.641
-1.374
998 | -0.895
-6.146
-2.230
-2.038
-1.672
-1.164 | | Lower surface | | | | | | | | | | | 1.0
2.5
5
7.5 | 041
591
598
605 | .346
293
379
413 | .550
121
241
302 | .998
.100
054
154 | .910
.279
.095
027 | •998
•576
•362
•214 | .890
.781
.564
.401 | •590
•904
•724
•563 | 1.000
.881
.730
021 | CONFIDENTIAL NATICNAL ADVISORY Figure 1.- Comparison of the NACA submerged duct system and the wing leading-edge duct system as applied to the fighter airplane. #### COMPRENTIAL Figure 2.- Comparison of the internal-ducting systems for the NACA submerged duct entry and wing leading-edge duct entry for the $\frac{1}{4}$ -scale flow model of the fighter airplane. Figure 3.- General arrangement of the fighter airplane equipped with NACA submerged duct entries. where 4.- The $\frac{1}{4}$ -scale flow model of the fighter airplane, equipped with wing leading-edge duct entries and the flaps deflected 50° , installed in the Ames 7- by 10-foot wind tunnel No. 1. GONFIDENTIAL Figure 5.- Schematic view of the test setup for the separate tests of the internal ducting systems for the fighter airplane. Figure 6.- Internal flow diagram of the $\frac{1}{4}$ -scale flow model. Figure 7.- Variation of airplane lift coefficient with the $\frac{1}{4}$ -scale model angle of attack for the fighter airplane. Gross weight = 16,4000. Figure 8.- Variation of airplane lift coefficient with inlet-velocity ratio for 100-percent total-head recovery. Gross weight = 16,400 lb. Figure 9.- Comparison of boundary 1 of reference 1 with the boundary layer at entrance to the NACA submerged duct entry for the $\frac{1}{4}$ -scale flow model of the fighter airplane. Figure 10.- Variation of total-head loss with duct-entrance dynamic pressure for the internal ducting systems of the $\frac{1}{4}$ -scale flow model of the fighter airplane. Figure 11.- Comparison of experimental and estimated dynamic pressure recovery for NACA submerged duct entries on a $\frac{1}{4}$ -scale flow model of a fighter airplane. (a) Side view of duct showing station markings on fuselage. (b) Close-up of duct showing station markings on fuselage. Figure 12.- Views of the final configuration of the NACA submerged Figure 13.- Lip, ramp, and deflector ordinates for the NACA submerged duct entry on the $\frac{1}{4}$ -scale flow model of the fighter airplane. #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS Figure 14.- Detail sketch and ordinates of the wing leading edge inlet for the $\frac{1}{4}$ -scale flow model of the fighter airplane. NACA RM No. A7A31 or erather Tolke Lateration Figure 15.- Comparison of the duct system losses at the simulated compressor entrance for the $\frac{1}{4}$ -scale flow model of the fighter airplane. Figure 16.- Comparison of dynamic pressure recovery for the wing duct entry and NACA submerged duct entry for the fighter airplane. ... Charles Mine March 1986 ## NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS Figure 17.- Pressure distribution along the ramp of the $\frac{1}{4}$ -scale flow model of the fighter airplane. Figure 18.- Critical Mach number at matched sea level flight conditions for the NACA submerged inlet and the wing leading-edge inlet on the $\frac{1}{4}$ -scale flow model of a fighter airplane. ``` NAMES : TOO (No (23) 0 (2) (30) (10) C-5-2-1 ATTI- 20720 Mossman, E. A. DIVISION: Power Power Plants, Jst and Turbine (5) ORIG. AGENCY NUMBER SECTION: Induction System (2) Gault, D. E. RL! A7A31 CROSS REFERENCES: Ducts, Intake - Pressure recovery (31390.4): Pressure distribution - Intake ducts DEVISION (74120) AUTHOR(S) AMER. TITLE: Development of NACA submerged inlets and a comparison with wing leading-edge inlets for a 1/4-scale model of a fighter airplane FORG'N, TITLE: ORIGINATING AGENCY: National Advisory Committee for Aeronautics, Vashington, D. C. TRANSLATION: COUNTRY LANGUAGE FORG'NCLASS U. S.CLASS. | DATE PAGES ILLUS. FFATURES U.S. Eng. Go=16:1 | Aug 47 | 42 photoe, tables, diagrs, graphs DESTEDACY Characteristice of NACA submerged duct entries and wing leading-edge inlete designed for a 1/4-scale flow model of a fighter, powered by a jet engine in the fuselage, are presented. Duct total-head losses at the simulated entrancs to the jet engine and pressure distribu- tions over the duct entries are shown. A comparison of the dynamic pressure recovery and critical Each number of the two intake systems is made, which shows that the NACA sub- ``` merged duct provides a better method of supplying air to jst sngines. Included is a discuesion of methods of ameliorating the duct-flow instability of a twin-entrance submerged duct system. NOTE: Requests for copies of this report muet be addressed to: N.A.C.A., Washington, D.C. T-2. HQ., AIR MATERIEL COMMAND AIR TECHNICAL INDEX WRIGHT FIELD, OHIO, USAAF NUMBER IO AM 177-0-71 MAR 47 153